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ARMA representation for a sum of autoregressive proc-
esses

In the time analysis essentially three representations are consid-
ered: an ARMA representation, a representation in the state space and a
spectral representation. The ARMA representation is the most common
must frequently one and is very often applied . The special cases of this
representation, i. e., AR and MA models are very often used in the mod-
eling of economic processes is not. The ARMA models is created as fun-
damental in building of forecasts in so called the Box-Jenkins method.
 In this article some problems of the ARMA representation will be
presented.

Definition 1. A stationary multidimensional process Yt  of the
form

Yt H j t jj
E t V t= −=

∞
∑ = =ε ε ε

0
0, , Ω (1)

has the ARMA(p,q) representation, only if it can be written in the form of
differentiat  equation

Φ Θ( ) ( ) ,L Y Lt t= ε (2)
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where Φ Θ( ) ( )z and z= =0 0  have all the roots outside the unit circle.

The ARMA representation is not univocal. This problem is illus-
trated below on an examples.

Example 1.       Let  Φ Θ( ) ( ) ,L Y Lt t= ε
and

Φ Θ* *( ) ( ) ,L Y Lt t= ε (4)
where

Φ Φ Θ Θ* *( ) ( ) ( ), ( ) ( ) ( )L A L L L A L L= = (5)

be a representation of the same stochastic process.

Example 2. The process MA(1)

Yt t t= − −ε εΘ1 1 (6)

can be written in the form

( ) ( )1 11 1
2 2+ = −Θ ΘL Y Lt tε (7)

If Θ1
2 0=  then the process MA(1) may be presented in the form of

AR(1). It is possible, because the matrix equation Θ1
2 0=  has a solution.

Taking into account the above a minimal representations of
ARMA models should be considered.

Definition 2. A stationary process Yt  has a minimal representa-
tion of ARMA type, if polynomials Φ Θ( ) ( )L and L  do not have com-
mon roots.

Below the important theorem of minimal representation is quoted
according to Beguin, Gourieroux, Monfort (1980). This theorem is
treated as a practical way in verifying the models of stochastic processes
and in identifying the time series as well.



Theorem 1. A stationary process Yt  has a minimal representa-
tion of ARMA type if and only if
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where
∆(i,j)=detA(i,j) (9)

A(i,j) is the matrix of autocovariance coefficient γ(h).
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On the ground of ∆(i,j) values the array (so-called C-array) is
built, which is used to determine the orders p and q of an ARMA model.
If a process has the minimal ARMA representation, then the C-array has
the form:

Table 1.

i\j 0 1 2 ... q-1 q q+1 ...
0 x x x ... x x x ...
1 x x x ... x x x ...
2 x x x ... x x x ...
... ... ... ... ... ... ... ... ...
p-1 x x x ... x x x x
p x x x ... x 0 0 0
p+
1

x x x ... x 0 0 0

... ... ... ... ... x 0 0 0

where 0 means zero value of determinant of the matrix A(i,j),
where x means non-zero value of determinant of the matrix A(i,j).



The method presented above allows to identify a minimal ARMA
representation for the sum of processes. It refers in particular to the proc-
esses those sum is general of the ARMA type of process. This fact was
discussed in Granger, Morris (1976).

Theorem 2. If  the (nx1) stationary Yt  process has the ARMA
representation Φ Θ Ψ( ) ( ) ( )L Y L and Lt t= ε  is the (m,n) matrix of
polynomial, the process Ψ Ψt tL Y* ( )=   has an ARMA representation too.

This theorem (see Gourieroux, Monfort (1990)) is a simple con-
clusion derived from the theorem saying that a process has an ARMA
representation, when the spectral density function is a function with re-
spect to e iω . In the theorem 2 is not included a way of determining the
representation of process Yt

* . In special cases it is possible, but in general
it is very difficult.

Example 3. If Y and Yt t1 2  are of the MA(1) type of processes
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and for all t and tτ ε ε τcov( , )1 2 0= , then process

Y Y Yt t t= +1 2 (12)

is also of the type MA(1). In this case the parameters of this process may
be determined (derived), i. e. coefficient of process and a variance of
white noise create the process Yt .

If Y and Yt t1 2  are autoregressive processes of the form
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then the process
Y Y Yt t t= +1 2 (14)



is of the ARMA(2,1) type. It can be written in the form

Φ( ) ( )L Y Lt t= −1 θ ε (15)
where

Φ Φ Φ Φ Φ( ) ( )L L L= − + +1 1 2 1 2
2 (16)

the parameter θ εand V t  may be derived from a solution of the equa-
tions
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The process Φ( ) ( )L Y Lt t= −1 θ ε  can be identified as the
ARMA(1,0) process, if the condition { }min ,θ θ− − <Φ Φ1 2 1K  is satis-

fied (value K1  is close to zero). The process Φ( ) ( )L Y Lt t= −1 θ ε  can be
identified as the ARMA(2,0) process, if θ < K 2  (value K 2  is close to
zero). The table 2 presents the orders p and q of the ARMA(p,q) process
for a sum of AR(1) processes with indicated parameters Φ Φ1 2and .
The assumption was arbitrary made that K K1 2 01= = . .

Table 2.

Φ1/Φ2 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
-0.9 (2,0) (2,0) (2,0) (2,0) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)
-0.8 (2,0) (2,0) (2,0) (2,0) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)
-0.7 (2,0) (2,0) (2,0) (2,0) (2,0) (2,1) (2,1) (2,1) (2,1) (2,1)
-0.6 (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,1) (2,1) (2,1) (2,1)
-0.5 (2,1) (2,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,1) (2,1) (2,1)
-0.4 (2,1) (2,1) (2,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,1) (2,1)
-0.3 (2,1) (2,1) (2,1) (2,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,1)
-0.2 (2,1) (2,1) (2,1) (2,1) (2,1) (2,0) (2,0) (2,0) (2,0) (1,0)
-0.1 (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,0) (2,0) (2,0) (1,0)

0 (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,0) (1,0) (2,0)
0.1 (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (1,0) (1,0) (1,0)
0.2 (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (1,0) (1,0) (1,0) (2,0)
0.3 (2,1) (2,1) (2,1) (2,1) (2,1) (1,0) (1,0) (1,0) (2,1) (2,1)



0.4 (2,1) (2,1) (2,1) (2,1) (1,0) (1,0) (1,0) (2,1) (2,1) (2,1)
0.5 (2,1) (2,1) (2,1) (1,0) (1,0) (1,0) (2,1) (2,1) (2,1) (2,1)
0.6 (2,1) (2,1) (1,0) (1,0) (1,0) (2,1) (2,1) (2,1) (2,1) (2,1)
0.7 (2,1) (1,0) (1,0) (1,0) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)
0.8 (1,0) (1,0) (1,0) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)
0.9 (1,0) (1,0) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)

To evaluate the ARMA (p,q) representation for sum of autore-
gressive of the AR(1) type the theorem 1 was used.

For the process Yt  the autocovariance function can be found. For the
sake of simplicity it was assumed that σ σ1
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function for considered processes may expressed as follows:
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Assuming, that cov( , )Y Y for all t andt1 2 0τ τ= , the autocovariances
functions component-processes.

Example 4. Let Φ Φ1 20 7 0 3= = −. .and .
Then the C-array has the form

Table 3.

p/q  0 1  2 3
 0 1.04  1.06 0.64  0.48
1  -2.16 0.45  -0.10 0.02
 2 0.86 0.00 0.00  0.00
3  -0.35 0.00  0.00 0.00

The analysis of above array leads to the statement, that the sum of AR(1)
processes with indicated parameters Φ Φ1 2and  is the ARMA(2,1) type
of process.



In the same way, as in the example 4, the orders p and q mere
determined for the ARMA representation of a sum of autoregressive pro-
cesses assuming different welficients. The results are tabulated below.

Table 4.

Φ1/Φ2 0.9  0.8  0.7  0.6  0.5 0.4  0.3  0.2  0.1
 -0.9 (2,0) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)
 -0.8 (2,1) (2,0) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)
 -0.7 (2,1) (2,1) (2,0) (2,1) (2,1) (2,1) (2,1) (2,1) (1,1)
 -0.6 (2,1) (2,1) (2,1) (2,0) (2,1) (2,1) (2,1) (2,1) (1,1)
 -0.5 (2,1) (2,1) (2,1) (2,1) (2,0) (2,1) (2,1) (1,1) (1,1)
 -0.4 (2,1) (2,1) (2,1) (2,1) (2,1) (2,0) (1,1) (1,1) (1,1)
 -0.3 (2,1) (2,1) (2,1) (2,1) (2,1) (1,1) (2,0) (1,1) (1,1)
 -0.2 (2,1) (2,1) (2,1) (2,1) (1,1) (1,1) (1,1) (2,0) (1,0)
 -0.1 (2,1) (2,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,0) (0,0)

 0 (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,0) (1,0) (1,0)
0.1 (2,1) (2,1) (1,1) (1,1) (1,1) (1,1) (1,0) (1,0) (1,0)
 0.2 (2,1) (2,1) (1,1) (1,1) (1,1) (1,0) (1,0) (1,0) (1,0)
 0.3 (2,1) (2,1) (1,1) (1,1) (1,0) (1,0) (1,0) (1,0) (1,0)
 0.4 (2,1) (2,1) (1,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,1)
 0.5 (2,1) (2,1) (1,1) (1,0) (1,0) (1,0) (1,0) (1,1) (1,1)
0.6 (2,1) (1,1) (1,0) (1,0) (1,0) (1,0) (1,1) (1,1) (1,1)
 0.7 (2,1) (1,0) (1,0) (1,0) (1,1) (1,1) (1,1) (1,1) (1,1)
 0.8 (2,1) (1,0) (1,0) (1,1) (2,1) (2,1) (2,1) (2,1) (2,1)
 0.9 (1,0) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)

It seen, that in special cases a sum of autoregressive processes is a
autoregressive process. However, this process has in general be identified
as the ARMA(2,1) process.

The following tables were constructed nucler the assumption
about the correlation of component-processes. The orders p and q of the
ARMA(p,q) representation for different value of covariance function and
coefficients Φ Φ1 2and  are presented below.



It is not possible to create the process Y Y Yt t t= +1 2  for all values
of Φ Φ1 2and  covariance function cov( , )Y Yt t1 2 . These parameters and
covariance function should satisfy the following equation

cov( , )
cov( , )

Y Yt t
t t

1 2
1 2

1 21
=

− ⋅
ε ε
Φ Φ

.

To determine cov( , )Y Yt t1 2  the covariance cov( , )ε ε1 2t t  should be
known.

For example covariance cov( , )Y Yt t1 2 =0.8 may be determined for
satisfying the condition Φ Φ1 2 0 25⋅ ≥ − . .

Table 5. The orders p and q of the ARMA process, when 
cov( , ) .Y Y for tt1 2 0 8τ τ= =

Φ1/Φ2  0.9  0.8 0.7  0.6  0.5 0.4  0.3  0.2 0.1
 -0.9  (2,2)  (2,1)
 -0.8  (2,2) (2,1)  (2,1)
 -0.7  (2,1)  (2,1)  (1,1)
-0.6  (2,1)  (2,1)  (2,1)  (1,1)
 -0.5 (2,1)  (2,1)  (2,1)  (1,1)  (1,1)
 -0.4 (2,1)  (2,1)  (2,1)  (1,1)  (1,1)  (1,1)
-0.3  (2,2)  (2,1)  (2,1)  (2,1)  (1,1) (1,1)  (1,1)  (1,1)
 -0.2  (2,2)  (2,1) (2,1)  (2,1)  (1,1)  (1,1)  (1,1)  (0,1) (0,1)
 -0.1  (2,1)  (2,1)  (1,1)  (1,1) (1,1)  (1,1)  (1,1)  (0,1)  (0,0)
0.1  (2,1)  (2,1)  (1,1)  (1,1)  (1,1) (1,1)  (1,1)  (0,1)  (1,0)
 0.2 (2,1)  (2,1)  (1,1)  (1,1)  (1,1)  (1,1) (1,1)  (1,0)  (0,1)
 0.3  (2,2) (2,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1) (1,1)  (1,1)
 0.4  (2,2)  (2,1) (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1) (1,1)
 0.5  (2,2)  (2,1)  (1,1) (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)
0.6  (2,2)  (1,1)  (1,1)  (1,1) (1,1)  (1,1)  (1,1)  (1,1)  (1,1)
0.7  (2,2)  (1,1)  (1,1)  (1,1)  (1,1) (1,1)  (1,1)  (1,1)  (1,1)
 0.8 (2,1)  (1,1)  (1,1)  (1,1)  (2,1)  (2,1) (2,1)  (2,1)  (2,1)
 0.9  (1,1) (2,1)  (2,2)  (2,2)  (2,2)  (2,2)  (2,2) (2,1)  (2,1)



Table 6. The orders p and q of the ARMA process, when 
cov( , ) .Y Y for tt1 2 0 4τ τ= =

Φ1/Φ2  0.9  0.8 0.7  0.6  0.5 0.4  0.3  0.2 0.1
 -0.9  (2,2)  (2,2)  (2,2) (2,2)  (2,2)  (2,2)  (2,2)  (2,1)  (2,1)
 -0.8  (2,2)  (2,2)  (2,2)  (2,2)  (2,2) (2,2)  (2,1)  (2,1)  (2,1)
 -0.7  (2,2) (2,2)  (2,2)  (2,2)  (2,2)  (2,1)  (2,1) (2,1)  (1,1)
 -0.6  (2,2)  (2,2)  (2,2) (2,2)  (2,1)  (2,1)  (2,1)  (2,1)  (1,1)
 -0.5  (2,2)  (2,2)  (2,2)  (2,1)  (2,1) (2,1)  (2,1)  (1,1)  (1,1)
 -0.4  (2,2) (2,2)  (2,1)  (2,1)  (2,1)  (2,1)  (1,1) (1,1)  (1,1)
 -0.3  (2,2)  (2,1)  (2,1) (2,1)  (2,1)  (1,1)  (1,1)  (1,1)  (1,1)
 -0.2  (2,1)  (2,1)  (2,1)  (2,1)  (1,1) (1,1)  (1,1)  (0,1)  (0,1)
 -0.1  (2,1) (2,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1) (0,1)  (0,0)
  0.1  (2,1)  (2,1) (1,1)  (1,1)  (1,1)  (1,1)  (1,0)  (1,0) (1,0)
  0.2  (2,1)  (2,1)  (1,1) (1,1)  (1,1)  (1,1)  (1,0)  (1,0)  (1,0)
  0.3  (2,1)  (2,1)  (1,1)  (1,1) (1,1)  (1,1)  (1,0)  (1,0)  (1,0)
  0.4  (2,1)  (2,1)  (1,1)  (1,1)  (1,1) (1,1)  (1,1)  (1,1)  (1,1)
  0.5 (2,1)  (2,1)  (1,1)  (1,1)  (1,1)  (1,1) (1,1)  (1,1)  (1,1)
  0.6  (2,1) (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1) (1,1)  (1,1)
  0.7  (2,1)  (1,1) (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1) (1,1)
  0.8  (2,1)  (1,1)  (1,1) (1,1)  (2,1)  (2,1)  (2,1)  (2,1)  (2,1)
  0.9  (1,1)  (2,1)  (2,1)  (2,1) (2,1)  (2,1)  (2,1)  (2,1)  (2,1)

Table 7. The orders p and q of the ARMA process, when 
cov( , ) .Y Y for tt1 2 0 4 1τ τ= = −

Φ1/Φ2  0.9  0.8 0.7  0.6  0.5 0.4  0.3  0.2 0.1
 -0.9  (2,3)  (2,3)  (2,3) (2,3)  (2,3)  (2,3)  (2,2)  (2,2)  (1,2)
 -0.8  (2,3)  (2,3)  (2,3)  (2,3)  (2,3) (2,2)  (2,2)  (1,2)  (1,2)
 -0.7  (2,3) (2,3)  (2,3)  (2,3)  (2,2)  (2,2)  (1,2) (1,2)  (1,2)
 -0.6  (2,3)  (2,3)  (2,3) (2,2)  (2,2)  (2,2)  (1,2)  (1,2)  (1,2)
 -0.5  (2,3)  (2,3)  (2,2)  (2,1)  (2,1) (2,1)  (1,2)  (1,2)  (1,1)
 -0.4  (2,3) (2,2)  (2,2)  (2,1)  (1,2)  (0,2)  (0,2) (1,1)  (1,1)
 -0.3  (2,2)  (2,2)  (2,1) (2,1)  (1,1)  (0,2)  (0,2)  (1,1)  (1,1)
 -0.2  (2,2)  (2,1)  (1,1)  (1,1)  (1,1) (1,1)  (1,0)  (1,0)  (1,0)
 -0.1  (1,2) (1,2)  (1,2)  (1,1)  (1,1)  (1,1)  (1,1) (0,1)  (0,1)
  0.1  (1,2)  (1,2) (1,2)  (1,2)  (1,1)  (1,1)  (1,1)  (0,1) (0,1)
  0.2  (1,2)  (1,2)  (1,2) (1,2)  (1,1)  (1,1)  (1,1)  (0,1)  (0,1)
  0.3  (2,2)  (1,2)  (1,2)  (1,2) (1,1)  (1,1)  (1,1)  (1,1)  (1,1)
  0.4  (2,2)  (1,2)  (1,2)  (1,2)  (1,2) (1,1)  (1,1)  (1,1)  (1,1)
  0.5 (2,2)  (1,2)  (1,2)  (1,2)  (1,2)  (1,2) (1,1)  (1,1)  (1,1)
  0.6  (2,2) (1,2)  (1,2)  (1,2)  (1,2)  (1,2)  (1,2) (1,2)  (1,2)
  0.7  (2,2)  (1,2) (1,2)  (1,2)  (1,2)  (1,2)  (1,2)  (1,2) (1,2)



  0.8  (1,2)  (1,2)  (1,2) (1,2)  (1,2)  (1,2)  (1,2)  (1,2)  (1,2)
  0.9  (1,2)  (1,2)  (2,2)  (2,2) (2,2)  (2,2)  (2,2)  (1,2)  (1,2)

Table 8. The orders p and q of the ARMA process, when 
cov( , ) .Y Y for tt1 2 0 4 2τ τ= = −

Φ1/Φ2 0.9  0.8  0.7 0.6  0.5  0.4 0.3  0.2  0.1
 -0.9 (2,4)  (2,4)  (2,4)  (2,4)  (2,4)  (2,3) (1,3)  (1,3)  (1,3)
 -0.8  (2,4)  (2,4) (2,4)  (2,4)  (2,3)  (2,3)  (1,3)  (1,3) (1,3)
 -0.7  (2,4)  (2,4)  (2,4)  (2,3) (2,3)  (1,3)  (1,3)  (1,3)  (1,3)
 -0.6 (2,4)  (2,4)  (2,3)  (2,2)  (2,2)  (1,3) (1,3)  (1,2)  (1,2)
 -0.5  (2,4)  (2,3) (2,3)  (2,2)  (2,2)  (1,2)  (1,2)  (1,2) (1,2)
 -0.4  (2,3)  (2,3)  (1,3)  (1,3) (1,2)  (0,2)  (0,2)  (0,2)  (0,2)
 -0.3 (2,3)  (1,3)  (1,3)  (1,3)  (1,2)  (0,2) (0,2)  (0,2)  (0,2)
 -0.2  (1,3)  (1,3) (1,3)  (1,2)  (1,2)  (0,2)  (0,2)  (0,2) (0,2)
 -0.1  (1,3)  (1,3)  (1,3)  (1,2) (1,2)  (0,2)  (0,2)  (0,2)  (0,2)
0.1  (1,3)  (1,3)  (1,3)  (1,2)  (1,2) (0,2)  (0,2)  (0,2)  (0,2)
 0.2 (1,3)  (1,3)  (1,3)  (1,2)  (1,2)  (0,2) (0,2)  (0,2)  (0,2)
 0.3  (1,3) (1,3)  (1,3)  (1,2)  (1,2)  (1,2)  (0,2) (0,2)  (0,2)
 0.4  (1,3)  (1,3) (1,3)  (1,2)  (1,2)  (1,2)  (1,2)  (0,2) (0,2)
 0.5  (2,3)  (1,3)  (1,3) (1,3)  (1,2)  (1,2)  (1,2)  (1,2)  (1,2)
0.6  (2,3)  (1,3)  (1,3)  (1,3) (1,2)  (1,2)  (1,2)  (1,2)  (1,2)
0.7  (2,3)  (1,3)  (1,3)  (1,3)  (1,3) (1,3)  (1,3)  (1,3)  (1,3)
 0.8 (1,3)  (1,3)  (1,3)  (1,3)  (1,3)  (1,3) (1,3)  (1,3)  (1,3)
 0.9  (1,3) (1,3)  (2,3)  (2,3)  (2,3)  (1,3)  (1,3) (1,3)  (1,3)

The following conclusions may be derived:

1. The sum of AR(1) processes is in general ARMA type of process and as a
such type of process should be identification. The order of autoregressive is
not larger that 2, and the order q of MA depends on the parameters of com-
ponent process and on correlation of those processes.

2. The order of the obtained ARMA process increases with an increasment of
parameters and a distance t − τ , for which the autocovariance function
takes the non-zero value.

3. In special cases the sum of AR(1) processes is a autoregressive process of
AR(p) type. The order p may be also equal to one.

4. There are same cases when a sum of autoregressive processes of order
one gives the minimal representation ARMA(0,q), i.e., the process is



identified as MA(q). It happens for low values of parameters Φi and
autocovariance function taking non-zero values for ... t-τ=2.
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