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Predictive properties of the autoregressive
and state space models – a comparison

The paper is aimed to compare estimation results of the models generated
by ARMA process with the respective state space models. Both modelling rep-
resentations are also investigated with respect to their predictive properties.

1. The ARMA model

The ARMA representation1 of stationary stochastic process tz  has the form:

tt BzB εθφ )()( = (1)
or

qtqttptptt zzz −−−− −−−+++= εθεθεφφ ...... 1111 (2)

where:
p

p BBB φφφ −−−= ...1)( 1  is an autoregressive polynomial of p-order,

 q
q BBB θθθ −−−= ...1)( 1  is a moving average operator of q-order, 

tε  is white noise.
The process (1) may be written in the form:

                                                     
1 The description of ARMA model is presented in: Box, Jenkins (1983) and also

Talaga, Zieliński (1986).
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where:
10 =ψ .

2. The state space model

The state equation and the output equation (observation equation) formulate
the state space model2. The state space representation (SS hereafter) for station-
ary process tz  has the form:

ttt vGFxx +=+1 (4)

ttt vz += Hx (5)

where:
∆=tvcov ,

nn×F , pn×G , nl×H  are respective state matrix disturbances matrix and output
matrix.

3. Equivalence of the ARMA and space state models

The ARMA (p, q) model (described by formulas (1)–(3)) may be written as
the state space model.
Let ( )qpm ,max=  and pjj >=   dla  0φ . Then the state space model
(4)–(5) takes the form:
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2 The state space model was analysed among others in: Aoki (1990), Ogata (1974),

Michalczewska-Litwa (1977), Wąsik, Litwa, Skrzypek (1986), Gutenbaum (1975),
Grzesiak (1995) and Górka  (1997).
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     [ ] tt xz ⋅= 0...01          ...,1,0 ±=t (7)

On the contrary, the space state model, given in (6)–(7) may be written as
the ARMA model

111101111 ...... +−−+++−−++ +++=++++ tpptpttptpptpt zzzz εθεθεθφφφ

where:
pφφ ,...,1  are coefficients of characteristic polynomial of matrix F:
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λφλ FI (8)

and ( ) 1,...,1,0,...1
1 −=+++= − pii

ii
i GIFFH φφθ .

The relationship between minimal orders of ARMA representation and
minimal dimension of the state space representation is strict. Let qp,  be a re-
spective minimal order of the autoregressive polynomial and minimal order of
the moving average operator. Let K  be minimal dimension of state space
model. Then3

( )qpK ,max= . (9)

4. The state space model estimation

The Henkel matrix is given for observation tz
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3 The proof of (9) can be found in Gourieroux., Monfort (1997).
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The Hankel matrix is the covariance matrix between the future stacked +
tz  and

the stacked data −
−1tz . The estimate of the matrix (10) elements is expressed by

the formula (11)

kt
T
tk zz

N +=Λ
1ˆ . (11)

Let the singular value decomposition of the matrix H  be given by
TVΣU=H , where Σ  is a diagonal matrix and U, V are orthogonal matrices.

For each matrix of the SS model (4)–(5) the following estimates are given4:

2
1

2
1ˆ −−= VΣUΣF ATH (12)

1,
2
1ˆ

•
−= HTUΣM (13)

2
1

,1
ˆ −

•= VΣH H (14)

where:
2
1

2
1

ΣΣΣ =
2
1−Σ  – the Moore-Penrose pseudoinverse,

•• ,11, , HH  are respective first column and top row of matrix H ,
AH  – the covariance matrix5 between −

−
+
+ 11 tt zz and ,

∆+= GHΠFM T , where ( )T
ttE xxΠ ,= .

5. The estimation and prediction results analysis

As an example of the ARMA representation the AR(2) model was chosen to
show some properties of the representations in interest. The AR(2) series were
generated 500 times in Statistica 5.1 package. The observations number was
300 for each series. To save space the autoregressive coefficient 1φ  was stable
over all series and equal 0.5, while 2φ  coefficient changed by 0.1. Only station-
ary combinations of coefficients were taken into account. The white noise proc-
ess was generated as normally distributed N(0,1). The generated series were es-
timated to check the resulted AR(2) models and their state space equivalents.

                                                     
4 The estimation formulas derivation is avalaible in Aoki (1990).
5 Hankel matrix with additional row.
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The SS matrices were estimated using the formulas (11)–(14), with the pro-
gramme written in Statistica Basic, available in Statistica package. From (12) is
clear, that Hankel matrix is of the same dimension as the state matrix. The state
matrix is a quadratic one, then KJ = . The minimum dimension of the SS
model and the AR order are related according to equation (9). Thus

( ) ( ) 20,2max,max ==== qpKJ .

The autoregressive coefficients were estimated independent by OLS and by
way of state space. The ratios of the models which coefficients’ estimates, by
way of the SS and AR, do not exceed 10%, 20% and 30% of the respective val-
ues set in the modulus are collected in table 1.

The relationship between values of coefficients arbitrarily set and modulus
of the distance of the parameters' estimates, using the two independent methods,
can be noticed. The less is the value 2φ , the less the distances in estimates, not
only of the mentioned parameter. Besides, the ratio of the models better fitted is
different for the same modulus of the parameter 2φ .

The projection for 5 periods forward, for each series, was done.  The fore-
casts were calculated independently for the SS and AR models. It can be seen

Table 1. The ratios of the models which coefficients’ estimates do not exceed 10%,
20% and 30% of the respective values set.

φφ 1,0<∆ φφ 2,0<∆ φφ 3,0<∆
2φ

1φ 2φ 1φ 2φ 1φ 2φ
0,4 15,4% 12,6% 31,4% 27,4% 44,6% 37%
0,3 8,8% 5,8% 18% 12,6% 27% 18,6%
0,2 5,4% 2,8% 11,4% 5% 17,8% 9,2%
0,1 3,4% 0,8% 7,4% 2% 11% 2,8%
-0,1 2,4% 1% 6,2% 2,6% 10,4% 3,6%
-0,2 6,8% 17,6% 14% 30% 19,4% 41,8%
-0,3 12,2% 23,8% 25,2% 47,2% 38,2% 67%
-0,4 23,6% 29% 47,6% 59,2% 64% 81,2%
-0,5 34% 48,4% 59,4% 84% 79,4% 95,2%
-0,6 52,6% 69,6% 84% 97,4% 97% 99,4%
-0,7 53,6% 71,2% 87,8% 98,8% 98,4% 100%
-0,8 75,8% 81,8% 98,4% 99,6% 99,6% 100%
-0,9 92,2% 99,8% 100% 100% 100% 100%

* Computed by the author.
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that for the SS model, for some coefficient 2φ  values, the second value of the
forecast, i.e. the 302 fitted value is the local extreme. Let us assume that the lo-
cal maximum corresponds to the situation that 302 value of the projection is
bigger than the observation in time 300. The local minimum implies that the
projection value in time T+2 is less then in the T-s observation. In the case of
the AR models the described relationship cannot be confirmed.

It was assumed, for the AR model, that if the first three forecast values con-
stitute increasing sequence of numbers, then the projection value in 302 is
greater than the observation value in 300. If the opposite situation takes place,
the forecast values take form of the decreasing sequence of numbers and value
in 300 is bigger than in 302. The ratios of the proper forecasts for the models
under study, as well as the corresponding number of series for given 2φ , in
which the SS projection possesses the local extreme are presented in table 2.

For 4,02 −≤φ  each forecast sequence calculated on the basis of the SS
model possesses the local extreme. The ratio of cases when the forecast was
correct and the local extreme took place, independently of the value of 2φ  is
bigger than 74%. This means that if the local extremes appear then in at least
74 cases for each 100 we are able to forecast the direction of the series changes
correctly. For the AR (2) model the right forecasts were obtained in (24.2%;

Table 2. The ratios of the correct forecasts for models investigated.

The SS model’s
correct forecast
ratio

The AR model’s
correct forecast
ratio

min, max
in PS

The ratio of min,
max in good fore-
cast

2φ

number % number  % number %
0,4 0 0 121 24,2 0 0
0,3 0 0 203 40,6 0 0
0,2 0 0 283 56,6 0 0
0,1 1 0,2 318 63,6 3 33,3
-0,1 82 16,4 344 68,8 119 68,9
-0,2 269 53,8 307 61,4 376 71,5
-0,3 374 74,8 270 54 491 76,2
-0,4 373 74,6 237 47,4 499 74,7
-0,5 401 80,2 210 42 500 80,2
-0,6 406 81,2 218 43,6 500 81,2
-0,7 417 83 187 37,4 500 83
-0,8 439 87,8 175 35 500 87,8
-0,9 445 89 180 36 500 89

* Computed by the author.
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68.8%) cases. The last but not least remark is the following: the less is the dis-
tance between model parameters’ values the forecasts are more effective, i.e. we
are able to indicate the direction of the changes more properly.
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