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1. Introduction

The paper is addressed to identify the influence of time aggregation in stock
prices, observed at Warsaw Stock Exchange, on their characteristics. The re-
search consists of two parts. The first one concerns empirical rates of return
from stocks series, and the second one concerns the squares of return rates,
which are the realization of conditional variances of the series. Both type of se-
ries are weakly stationary.

The questions are:
- Does aggregation across time units change the characteristics of the se-

ries in interest?
- Is it possible to identify common cycles for greater number of the series

observed at Polish capital market?
- Which features are the most important for volatility series?
- What implications can be suggested for practice?

Spectral analysis methodology allows answer the above questions. The paper is
empirical. Theoretical parts: 2 and 3 only define the general framework and
methodology. The fourth part shows empirical results and gives some sugges-
tions for practice.
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2. Spectral Representation of Stationary Processes

Let tz  be a real-valued stationary process with absolutely summable auto-
covariance sequence ( )τK . Realization of the process tz  can be presented in
the form of the following equation:
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where ( ) ( )ττ −= KK , while the inverse Fourier transform has a form:
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The function ( )ωf , which is a continuous, non-negative (see Wei (1990)),
even and periodic of period π2 , is called the spectrum, where ωd  is a small
increase of frequencies. Variance of a stationary process equals to restricted
area between curve of ( )ωf  and axis ω with period [ ]ππ ,− . For a given auto-
covariance sequence, realization of the time series tz  can be written as:
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The above relation is called the spectral representation of stationary process tz .
To estimate spectral density function a periodogram can be used. Periodo-
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If ,0 πω <≤ k  then formula (5) takes form:
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where kk ba ,  are Fourier coefficients, while [ ]2...,,1,0 nk = .



Time aggregation in financial time series – spectral analysis 3

Periodogram is made up of [ ]2
n  quantity describe of equation (6). Single

quantity ( )kI ω  connected with frequency kω  is called intensity with frequency

kω .
To examine significance of each frequency kω  we can verify the following

hypotheses:
00:0: 10 ≠∨≠== kkkk baba Hvs.H .

The test statistics is:
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which follows the F-distribution ( )3,2 −nF .
In practice, in time series, periodic components of unknown frequencies

exist. For a model described by formula:
tt ttZ εωβωα ++= sincos , (8)

where tε  is white noise of i.i.d. ( )2,0 σN , but the frequency ω is not known,
we may test:

00:.0: 10 ≠∨≠== βαβα HvsH .
Let:
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Under the null hypothesis of the white noise process for tz , Fisher showed that:
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where [ ] 0,2 >= gnN , and m is the largest integer less than g1 . Thus, for
any given significance level α, we can use equation (9) to find a critical value

αg  such that:
( ) αα => gTP . (10)

To calculate the critical value we use only the first term in (9), i.e.,
( ) ( ) 11 −−≅> NgNgTP . (11)

For small N, critical values that calculated from equation (10) and (11) are very
good approximation of critical values that calculated from equation (9) and
(10).

Relationship between periodogram and spectral function is the following:
− if n is odd:
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To smooth the spectral density function we can use the spectral window. In the
presented paper, Parzen-type window was used:
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where M takes even value. Parzen window takes non-negative values for all fre-
quencies then spectrum estimator is non-negative.

3.  Volatility analysis

The investors’ decisions on capital market are often preceded by forecast of
the return and risk. As it is commonly known that is not an easy task. To evalu-
ate risk amount, ARCH type models are strongly recommended. ARCH models
do not explain the causes of the volatility, however successfully describe its
mechanism, what is mostly important for forecasting1. ARCH models have,
however, their limits, which are among others (see: Gourieroux (1997)):
– ARCH models well describe rates of return in stable environment, but do not

catch irregular changes, like threshold effects, opening and closing markets,
and so on,

– ARCH-type models fulfil the efficient market assumption2.
ARCH model (see Engle (1982)) in general assumes that discrete stochastic

process { }tε  takes the form:

tttt UVz =−= µε .

Denoting 2
tt Vh = , ARCH(1) model can be written  as:

,..., 21 −− ttt zzε  ~ ( )thN ,0 , (15)
2

110 −+= tth εαα . (16)
There are many modifications of the ARCH type models (see Osińska (2000),
Fiszeder (2001)) however that is not the subject in the presented paper. The

                                                
1 Empirical evidences show that the prices and returns volatility only in a small part

are dependent on fundamental processes changes  (see. Cuthbertson (1996)).
2 Assuming that stock prices follow martigale process, it allows second (or higher)

moments to be predicted within the framework of efficient market hypothesis.
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most important is here to analyse of the empirical conditional variance series
form the frequency analysis point of view.

4. Time aggregation of financial time series – empirical results

Efficient market hypothesis implies martingale representation of the finan-
cial prices, that means the returns are white noises or – to be less restrictive –
their higher moments can be auto-correlated (see Jajuga ed. (2000)).

In the presented paper the rates of return (in logs) for every stock and index
quoted at Warsaw Stock Exchange in 1995 – 2001 were investigated. Daily,
weekly (every Thursday) and monthly (every last working day in the month)
observations were taken. Analogous research for squares of returns was made.

The results for rates of returns are presented in table 1. To save space the
results for squares of returns are not reported here in details. The following con-
clusions can be formulated:

1. For daily data many frequencies proved to be statistically significant,
that suggests there is too much information to catch regular cycles. This
means that for daily data week form of efficiency is very likely to oc-
cur.

2. In many cases daily cycles equal to weekly cycles equal to monthly
ones. Such type of regularity shows that the cycles are strong and can
be used in forecasting. These are for example:

o 912 days = 182 weeks = 41 months for AGROS and WIRR,
o 261 days = 52 weeks =11,71 months for AGROS and KRAK-

CHEM,
o 73 days = 14,56 weeks = 3,42 months for ONETGR and OP-

TIMUS,
o 54 days = 10,71 weeks = 2,4 months for IRENA, MOSTOS-

TALWR and RAFAKO.
There are also many examples for equality of weekly and monthly peri-
ods and daily and weekly ones. For example 52 weeks = 11,71 months
this cycle occurs for AGROS, JELFA, KRAKCHEM, MOSTALEX,
POLIFARBC, WIG, WIG20, WIRR; 13 days = 2,5 weeks – for BSK,
DĘBICA, ELEKTRIM, EXBUD, KABLEHOLD, KREDYTB,
ONETGR, OPTIMUS, PROCHEM, ŻYWIEC, WIG, WIG20, WIRR.
This evidence stands however in opposition to the first one. By analysis
series observed with different frequencies, it is possible to indicate mo-
ments of greater regularity, then observing data only with one fre-
quency. Such regularity is more robust for practical use.

3. The cycles are of different periods for different stock, that means,
price series behave specifically across stocks. However some of the cy-
cles are true also for indices, which suggest cycles in the whole market
(or its corresponding segments).
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4. The cycles observed in stock prices can be of deterministic or stochastic
types.

5. For squares of return the following report can be made:
o For daily data we have 45 cases of infinite period, 16 – of 1824

days, 28 – 912 days, 10 – 608 days, 17 – 456 days, 6 – 365
days, 15 – 304 days, 3 – 261 days, 4 – 228 days, 4 – 182 days
and 6 times 79 days took place. In the remained cases cycles
appear rather rarely.

o For weekly data – in all cases infinite period took place, in 2 –
364 weeks, in 8 – 182 weeks, in 2 – 91 weeks and in 1 – 26
weeks.

o For monthly data – only infinite period was significant for all
cases.

The above suggests that cycles of longer periods are more frequent for
volatility series, however they are present only for daily data. For lower
frequency data the cycles become more seldom, which may be a reason
for suggestion that ARCH effects disappear with time aggregation of
series. Long periods of cycles can imply long memory in stock prices
volatility.

The final conclusion is that for the rates of returns time-aggregation of se-
ries does not change their characteristics, considered from the spectral analysis
methodology point of view. The same cycles are often present for daily, weekly
and monthly data. Evidence observed for daily data are much more likely to
confirm efficient market hypothesis, then the results for weekly and monthly
data. For volatility series, represented by squares of returns, the impact of the
time aggregation is more important, since cycles present in daily series are sel-
dom and seldom for weekly observations and almost disappear for monthly
data. These suggest that WSE investor should be aware of some-type of regu-
larities in rates of returns, which are independent of the frequency of the obser-
vation and occur in shorter and longer time periods. Regularities for longer pe-
riods are of greater importance for those agents who have longer investment ho-
rizon. The cycles are not so regular for volatility series, which implies that vari-
ance cannot be so easily forecasted.
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Table 1.  The results of spectral analysis for empirical rates of return (in logs)
Rates of return

Daily Weekly Monthly
Freq. Period F T Freq. Period F T Freq. Period F T

Agros 0,0038 261 8,2230 0,0090 0,0192 52,00 9,6096 0,0505 0,0854 11,71 9,8534 0,1996
Agros 0,0011 912 5,9649 0,0067 0,0055 182,00 6,5121 0,0367 0,0244 41,00 4,4673 0,1269
Amerbank 0,4615 2,17 11,7311 0,0610
Big 0,0795 13 5,1741 0,0057 0,0549 18,20 5,4538 0,0293
Bre 0,3956 2,53 4,0623 0,0226 0,4024 2,48 4,7803 0,1080
Bre 0,0549 18,20 4,7578 0,0257
Bsk 0,0795 13 8,2470 0,0091 0,3956 2,53 4,5403 0,0278 0,4024 2,48 4,1016 0,1054
Bytom 0,5000 2 12,0876 0,0131 0,0854 11,71 5,7064 0,1262
Bzwbk 0,4615 2,17 6,1812 0,0331 0,4024 2,48 5,6311 0,1248
Bzwbk 0,0412 24,27 5,1823 0,0298
Debica 0,0082 122 5,3244 0,0059 0,4615 2,17 6,1875 0,0345 0,0122 82,00 4,0562 0,0931
Debica 0,0784 13 4,5043 0,0052 0,3846 2,60 7,6399 0,0406 0,4390 2,28 3,9546 0,1004
Debica 0,0412 24,27 5,5812 0,0324
Drosed 0,0549 18,20 4,4271 0,0270 0,4024 2,48 5,0962 0,1143
Elektrim 0,0795 13 6,3054 0,0069 0,3846 2,60 5,4913 0,0295 0,4024 2,48 3,4662 0,0807
Exbud 0,3251 3 9,8905 0,0107 0,4615 2,17 4,5993 0,0273 0,4024 2,48 3,3369 0,0959
Exbud 0,0795 13 4,8751 0,0054 0,0412 24,27 5,0855 0,0293
Exbud 0,0082 122 4,8019 0,0054
Fortispl 0,0789 13 4,6520 0,0052 0,2830 3,53 5,6777 0,0328
Fortispl 0,2280 4,39 6,2231 0,0346



Rates of return
Daily Weekly Monthly

Freq. Period F T Freq. Period F T Freq. Period F T
Indykpol 0,4390 2,28 14,6311 0,2703
Irena 0,0565 18 5,2696 0,0059 0,4615 2,17 5,6051 0,0301
Irena 0,0186 54 5,1612 0,0058 0,0934 10,71 5,5259 0,0306
Jelfa 0,0192 52,00 4,2260 0,0240 0,0854 11,71 5,3401 0,1191
Kable 0,0412 24,27 4,8841 0,0280 0,0854 11,71 4,1607 0,0953
Kable 0,4390 2,28 3,3388 0,0861
Kablehod 0,0795 13 7,5597 0,0082 0,4615 2,17 4,4935 0,0257 0,4390 2,28 5,3805 0,1199
Kablehod 0,0082 122 5,9854 0,0067 0,0412 24,27 5,1800 0,0279
Krakchem 0,0038 261 6,4830 0,0072 0,1154 8,67 4,5229 0,0253 0,0854 11,71 6,4214 0,1398
Krakchem 0,0230 43 5,8027 0,0066 0,0192 52,00 6,3749 0,0341
Kredytb 0,0795 13 6,6893 0,0074 0,4615 2,17 4,1569 0,0248
Kredytb 0,3984 2,51 4,8381 0,0280
Kredytb 0,0412 24,27 5,3884 0,0301
Krosno 0,0230 43 5,6913 0,0063 0,1154 8,67 4,6228 0,0256
Mostalex 0,3958 3 10,2902 0,0112 0,4024 2,48 5,9576 0,1311
Mostalex 0,0854 11,71 3,3830 0,0908
Mostalwr 0,0186 54 6,2365 0,0069 0,4615 2,17 4,5498 0,0254 0,4024 2,48 5,3807 0,1199
Mostalwr 0,0934 10,71 5,6999 0,0306 0,4390 2,28 4,6352 0,1193
Mostalzb 0,4615 2,17 4,4209 0,0261 0,4390 2,28 4,6992 0,1063
Mostalzb 0,3984 2,51 4,1531 0,0259
Mostalzb 0,0412 24,27 4,9171 0,0274



Rates of return
Daily Weekly Monthly

Freq. Period F T Freq. Period F T Freq. Period F T
Novita 0,0082 122 5,2908 0,0059 0,2280 4,39 5,8323 0,0313 0,0244 41,00 3,0529 0,0717
Novita 0,0795 13 5,2838 0,0059 0,0412 24,27 4,9964 0,0286
Novita 0,0455 22 5,0029 0,0057
Onetgrup 0,0137 73 6,5097 0,0072 0,2830 3,53 5,3152 0,0295 0,2927 3,42 3,7927 0,0969
Onetgrup 0,0565 18 6,2808 0,0070 0,0687 14,56 5,8393 0,0313 0,0244 41,00 3,5489 0,1010
Onetgrup 0,0795 13 5,5465 0,0064 0,0055 182,00 4,6157 0,0273
Optimus 0,0137 73 6,5097 0,0072 0,2830 3,53 5,3152 0,0295 0,2927 3,42 3,7927 0,0969
Optimus 0,0565 18 6,2808 0,0070 0,0687 14,56 5,8393 0,0313 0,0244 41,00 3,5489 0,1010
Optimus 0,0795 13 5,5465 0,0064 0,0055 182,00 4,6157 0,0273
Polifarbc 0,4615 2,17 6,5671 0,0351 0,4390 2,28 5,0714 0,1138
Polifarbc 0,0412 24,27 5,5446 0,0309 0,0854 11,71 3,1934 0,0933
Prochem 0,0795 13 9,9583 0,0108 0,3956 2,53 4,2968 0,0245 0,0976 10,25 3,9889 0,0917
Prochem 0,0220 45,50 4,5271 0,0252 0,4024 2,48 3,2389 0,0834
Prochnik 0,0000 9,2885 0,1904
Rafako 0,0186 54 4,8015 0,0054 0,0934 10,71 5,1128 0,0284 0,4390 2,28 4,5834 0,1040
Rafako 0,0854 11,71 3,7113 0,0959
Remak 0,4634 2,16 7,2908 0,1558
Rolimpex 0,3846 2,60 5,0902 0,0305 0,0854 11,71 5,5064 0,1223
Stalexp 0,1272 8 10,0605 0,0109 0,0244 41,00 3,4956 0,0886
Tonsil 0,4589 2 10,7904 0,0117 0,2308 4,33 8,3880 0,0444 0,0000 7,8209 0,1653
WIG 0,0921 11 7,8485 0,0087 0,4615 2,17 4,8022 0,0268 0,0854 11,71 4,5583 0,1035



Rates of return
Daily Weekly Monthly

Freq. Period F T Freq. Period F T Freq. Period F T
WIG 0,0795 13 11,7728 0,0128 0,3846 2,60 4,4859 0,0264 0,4390 2,28 3,2095 0,0838
WIG 0,0082 122 6,5461 0,0074 0,0412 24,27 5,8171 0,0312
WIG20 0,0921 11 6,2616 0,0071 0,4615 2,17 5,7094 0,0317 0,0854 11,71 4,5959 0,1042
WIG20 0,0795 13 8,7010 0,0095 0,3846 2,60 6,1738 0,0331
WIG20 0,0412 24,27 4,3669 0,0268
WIRR 0,0011 912 9,3217 0,0101 0,1154 4,39 4,7823 0,0280 0,0244 41,00 8,9368 0,1845
WIRR 0,0795 13 6,2350 0,0069 0,0055 8,67 5,2509 0,0298 0,0854 11,71 5,3195 0,1455
WIRR 0,0455 22 4,9101 0,0056 0,3984 182,00 9,5111 0,0501
WIRR 0,0230 43 4,8584 0,0056
Żywiec 0,0795 13 7,7526 0,0084 0,3984 2,51 6,4842 0,0347


