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Abstract The presence of a noise, which is typical for real data, makes methods of chaotic 

signals analysis much more difficult to apply to. That is why algorithms of noise reduction in 

chaotic time series have been recently developed. A lot of existing algorithms require setting 

values of specified parameters and in consequence lead to many outputs. Thus one must 

additionally apply a supporting method which allows to indicate a “proper” output. In this 

paper such a new method is proposed and examined. As an example, the presented method is 

applied to support the Nearest Neighbours algorithm to reduce the noise in the time series 

from the Warsaw Stock Exchange. Next the cleaned data are investigated for the presence of 

chaos. 
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1. INTRODUCTION 

 

 Chaos theory has become a new approach to an analysis of economic processes. It 

deals with deterministic systems which due to complicated dynamics appear to be random. In 
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consequence chaotic time series seem to be irregular but in fact they are generated by 

deterministic rules, which make them predictable in a short run. However, due to sensitive 

dependence on initial conditions long-run predictions of chaotic time series are strongly 

limited.  

Distinguishing random dynamics from chaotic one is not an easy task and requires 

special methods. An empirical evidence of chaos in real data has been reported by various 

researchers. The most promising results have been obtained for financial time series, e.g. 

stock prices and indices, exchange rates or futures prices (see e.g.: [1], [4], [10], [20], [29], 

[26]).  

 The presence of a noise is typical for economic data. It makes chaos detection and 

forecasting much more difficult. That is why methods of chaotic time series analysis have 

been improved, to become more resistant to a noise. Simultaneously methods of noise 

reduction have been developed (e.g. [9], [12], [16], [19], [25]). Many of them lead to different 

outputs depending on considered values of specific parameters. Thus it is necessary to apply a 

supporting procedure verifying a posteriori the results of noise reduction. The task for such a 

procedure is to indicate which one from the obtained outputs is the best, i.e. the most similar 

to the original noise-free signal
1
. Since noise-free signals are usually unknown in practice, it 

must work without this information. Such a new method based on the new measure of a noise 

level is proposed in this paper. This technique is very easy to apply to and can be applied to 

noisy multivariate states or, by considering delay vectors, to noisy time series.  

 This paper is organized as follows. Section 1 contains the introduction. In section 2 

noisy chaos is defined. The idea of noise reduction is described in section 3. In section 4 the 

new method of determining a level of a noise is introduced. The results of numerical 

experiments verifying this method are presented in section 5. Next the proposed technique is 

                                                
1
 Some examples of such procedures are presented in e.g. [18]. 
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applied to the time series from the Warsaw Stock Exchange. The results of this research and 

the largest Lyapunov exponent estimates are presented in section 6. The last section is a short 

summary. 

 

2. NOISY CHAOS 

 

In the modern econometric approach the idea of random forces in economic 

phenomena is fundamental and has made stochastic modeling dominant (see [2]). According 

to this approach, a stochastic term is regarded in chaos theory by introducing a class of 

models called “noisy chaos”.  

The idea of noisy chaos is to distinguish two parts in a signal: the deterministic (chaotic) 

and the random ones. By the definition, a time series )( tx  has a smooth system explanation 

with a noisy observer and noisy law of motion, if there is a 2
C  function RRRh

n →×:  and 

if there exists a 2
C  function nn

RRRf →×:  such that for all t: 

   ( )ttt εsfs ,1−= ,       (1) 

   ),( ttt ηshx = ,        (2) 

where n

t Rs ∈  is a state of the n-dimensional dynamical system at the t-th moment, )( tη  and 

)( tε  are independently and identically distributed stochastic processes (see [5]). 

 The typical sources of the observational noise )( tη  in economic time series are 

measurement errors, whereas the dynamical noise )( tε  usually represents external influences 

perturbing systems. These factors are typical for economic phenomena, which makes 

introduction of noisy chaos to economics fully plausible.  
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 The properties of noisy signals depend on a relative force of the random and 

deterministic part. Its measure is the signal-to-noise ratio (SNR) which is a ratio of the 

variance (or standard deviation) of the noise-free signal and that of the pure-noise signal. SNR 

greater than about 1000 can be regarded as a low noise and less than about 10 as a high noise 

(see [24]). 

 Due to sensitive dependence on initial conditions, even a very weak dynamical noise 

radically changes the evolution of chaotic systems. However, a weak noise may not alter 

qualitative properties of trajectories, since in noisy, chaotic systems fundamentality of chaos 

is remained (see [7], [22]), i.e.: 

� erratic dynamics is caused by nonlinear interactions between endogenous forces 

(represented by deterministic part of a signal), 

� systems are sensitive dependent on initial conditions, which implies that long-run 

predictions are strongly limited, 

� systems are predictable in a short run, 

� in dissipative systems an attracting set is remained (it looks like a “thicker” version of 

the noise-free attractor, i.e. for low resolution these two objects are indistinguishable). 

 On the other hand it should be marked that the presence of a noise may make methods 

of chaotic data analysis much more difficult to apply to or, sometimes, even useless (see [6], 

[11], [30]). Unfortunately, most of the existing methods are sensitive to the presence of a 

noise and that is why chaotic dynamics with a strong noise has been – so far – practically 

indistinguishable from truly random data (see [18], [28]). 
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3. NOISE REDUCTION 

 

 While analyzing real data a researcher must take into account the presence of a noise, 

which implies that investigated time series )( tx  can be decomposed as: 

  ttt εyx += ,        (3) 

where )( tε  is supposed to be a random noise with at least fast decaying autocorrelations and 

no correlation with the noise-free signal )( ty  (see [18]). 

 The aim of noise reduction is to recover the signal )( ty  based on the noisy data )( tx . 

The first step in this process is to establish a criterion for distinguishing )( ty  from )( tε . The 

classical statistical tool providing this distinction is the spectral analysis, but this approach 

fails for chaotic data (see e.g. [4]). In chaos theory “randomness” is used to be associated with 

“high-dimensionality”, “determinism” with “low-dimensionality” and the tool obtaining this 

distinction becomes correlation dimension (see [13]). 

 The issue of noise reduction is strictly associated with prediction, so methods of chaos 

forecasting are used to noise reduction. Very simple but simultaneously efficient prediction 

and noise reduction technique is the Nearest Neighbour method (NN hereafter) (see [18]). 

According to this method, to determine the value ny  one should form delay vectors 

m

tx̂ = )...,,,( )11 +−− mttt xxx  and choose one of them with the coordinate nx  in the middle. For 

example, when m is even it can be the vector 
m

mnx 2
ˆ

+ . Let 
m

mlx 21
ˆ

+ , 
m

mlx 22
ˆ

+ , ... , 
m

mlk
x 2
ˆ

+  denote in 

such a case k the nearest (in a sense of any m-dimensional metrics) neighbours of the vector 



 7

m

mnx 2
ˆ

+ .
2
 Then a value ny~  which denotes an estimate of ny  may be computed from the 

following formula: 

  ∑
=

=
k

i

ln i
x

k
y

1

1~ .        (4) 

 

 

4. MEASURING THE EFFECTS OF NOISE REDUCTION 

 

 A very important issue referring to noise reduction is to measure its effectiveness. 

Usually in noise reduction methods values of specified parameters must be set a priori, so 

each method may lead to many outputs. When the original noise-free signal )( ty  is known, to 

determine the best output )~( ty  one may calculate a distance between )( ty  and )~( ty , defined 

as: 

  ∑
=

−=
N

t

tt yy
N

e
1

2)~(
1

,      (5) 

where N is the length of the time series. 

The issue is much more difficult when )( ty  is unknown. The new method proposed in 

this paper may be used in such a case. Its idea refers to an observable impact of an added 

noise on geometry of attractors
3
. It can be seen that the added noise makes attractors 

“thicker”, i.e. an average distance between close points of the attracting sets is getting bigger. 

As an example, this effect is illustrated for the time series generated from the Henon system
4
, 

                                                
2
 The amount of the nearest neighbours – k is arbitrarily set. However one can reconstruct the algorithm by 

considering a radius of a neighborhood instead. 
3
 Thus in principle the method is constructed to work with dissipative systems. 

4
 The Henon system is defined in section 5. 
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with the observational noise of different amplitude.
5
 To determine the noise level the ratio 

noise

Henon

σ

σ
SNR =  was used

6
. The attractors reconstructed from each noisy time series by the 

technique of delay coordinates are presented in Figures 2a–5a.  

 The proposed method of measuring the effects of noise reduction consists in 

calculating the quantity NRL (Noise Reduction Level), which measures the level of a noise in 

data by regarding the property presented above.
7
 In order to indicate the output which 

simultaneously is not distorted in comparison with the original noise-free signal, NRL consists 

of the two parts. The first one is the measure of mentioned “thickening”, defined as 

∑
=

=
T

i

id
T

d
1

min

1
, where T denotes the amount of approachable states (delay vectors) and id  

denotes a distance between i-th cleaned state (delay vector) and its closest neighbour. The 

biggest value of a relative decrease of mind  (in comparison to analyzing noisy data) indicates 

an output with the lowest level of a noise. However, considering only this factor is not 

sufficient, because such a procedure would always determine a time series with equal 

observations
8
. Thus the quantity NRL includes the second part – the value 

0

0

diam

diamdiam −
, 

where 0
diam  and diam  denote maximal distances between states (delay vectors), 

respectively, before and after noise reduction. This part measures a relative change of a 

diameter of the attractor and may be interpreted as a level of a distortion, caused by noise 

reduction. Finally NRL is defined by the following formula: 

                                                
5
 Pseudorandom numbers with uniform distribution were used in the research. 

6
 Symbols Henonσ  and noiseσ  denote standard deviations of, respectively, the noise-free data and the noise. 

7
 As it was mentioned before the method may be used to multivariate states or, by considering delay vectors, to 

univariate time series. 
8
 In the Nearest Neighbours method such an output is obtained for big values of the k parameter. 
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0

0

0

min

0

minmin

diam

diamdiam

d

dd
NRL

−
+

−
=       (6) 

 According to the proposed method, a time series with the lowest level of the quantity 

NRL should be chosen from the obtained outputs of noise reduction. 

 As it is clearly seen, when delay vectors are being analyzed the quantity NRL depends 

on the considered value of the embedding dimension m. According to the Takens theorem an 

attractor may be properly reconstructed if dm 2> , where d denotes a dimension of the 

system. Thus the method is not expected to work properly for values of m which do not 

satisfy the Takens condition. 

 

 

5. EXPERIMENTAL RESULTS 

  

 To examine the proposed method chaotic time series of length 2000 generated by the 

Henon map, logistic map and Lorenz system are used. These series are defined as follows: 

a) the logistic map ≡)( txf )1(41 ttt xxx −=+  with the initial point 7,00 =x , 

b) first coordinates of states from the Henon system generated by the equation 

≡),( tt yxH )3,0;4,11(),(
2

11 ttttt xxyyx −+=++ , with ( )00 , yx = ( )9,0,9,0 , 

c) the Lorenz map, described by the set of differential equations: 

zxy
dt

dz

yxxz
dt

dy

xy
dt

dx

4

92,45

)(16

−=

−+−=

−=
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with ( ) ( )1,1,1)0(),0(),0( =zyx . The analyzed time series was generated from the formula 

)01,0( ⋅= txxt , for each 1≥∈ Nt . 

 The observational noise with 1,10,25,50=SNR  was added to the each time series. 

Next the Nearest Neighbours method with 5=m  was used to reduce the noise from the 

obtained data.
9
 The following values of a radius of neighbourhoods were considered: 

=r 0.001, 0.01, 0.1, 1 for the Henon and logistic map and =r 0.02, 0.2, 2, 20 – in case of 

Lorenz system
10

.  

 At first, the time series generated by the Henon map was analyzed. In Figures 1–5 the 

attractors reconstructed from the data before and after noise reduction are presented
11

.  

 

[Figure 1] 

[Figure 2a] [Figure 2b] 

[Figure 3a] [Figure 3b] 

[Figure 4a] [Figure 4b] 

[Figure 5a] [Figure 5b] 

 

 In Tables 1–3 the computed values of the quantity NRL( 'm ) for 15,10,7,5,3,2,1'=m  

are presented.
12

 Since the method does not use information about the true noise-free signal 

)( ty , to verify its usefulness it is compared with values of the actual distances e. Each cell in 

the table contains the calculated value of NRL (at the top) and the relative change of the 

                                                
9
 To apply the NN method software TISEAN (routine nrlazy.exe) created by H. Kantz and T. Schreiber was 

used. In this routine m=5 is a default value.  
10

 The bigger values of r for the Lorenz system allow remaining the similar relation between r and the standard 

deviation of the investigated time series. 
11

 Figures 2b, 3b, 4b and 5b present attractors reconstructed from the outputs for which the quantity e is the 

smallest (see Tables 1–3). 
12

 The symbol m’ denoting an embedding dimension of delay vectors considered in calculations of NRL is 

introduced to avoid confusion with the m parameter in the Nearest Neighbour method. 
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diameter – 
0

0

diam

diamdiam −
 (at the bottom, in brackets). For each m’ the smallest value of NRL, 

indicating “the best” output, is bolded. In these simulations only the r parameter was being 

changed, thus here the statements: “the best output” and “the best value of r” are equivalent. 

 

[Table 1. Quantities NRL(m’) [ %] and e for the Henon map] 

 

[Table 2. Quantities NRL(m’) [ %] and e for the logistic map] 

 

[Table 3. Quantities NRL(m’) [ %] and e for the Lorenz system] 

 

 As it can be seen from Tables 1–3, for most values 1'>m  the proposed method 

indicated the proper (in terms of the actual, “unknown” distance e) output. Its ineffectiveness 

for 1'=m  was expected, since this value does not satisfy the Takens criterion. Thus it can be 

summarized that the method led to wrong conclusions only for the Henon and Lorenz time 

series with SNR=10, and additionally can be misleading for big values of 'm . Problems with a 

proper indication for SNR=10 may be avoided by the simultaneous inspection of the relative 

change of a diameter, since too big distortion in indicated data should be generally regarded 

as “suspicious” and can be justified only for noisy data with the strong random noise. 

However the presence of the strong noise may make true dynamics of noise-free signal 

uncovered at all and in consequence the applied procedure of noise reduction – useless. Thus 

choosing outputs with a high level of distortion seem to be doubtful.  
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6. APPLICATION TO REAL DATA 

 

 In this section the procedure of noise reduction is applied to daily log returns of the 

Warsaw Stock Exchange Index – WIG from 3.10.1994–18.05.2006 (2907 observations). WIG 

– the main index of the Polish stock market – reflects prices of all the quoted shares. Although 

the Warsaw Stock Exchange was developed in 1991, it was not until October 1994 that 

trading has taken place everyday. Therefore for data before that moment the basic condition 

of data homogeneity is not satisfied. 

 The Nearest Neighbours method with 15,10,7,5,3,2,1=m  was applied to reduce the 

noise in the investigated time series. For each m eight values of the r parameter were 

considered (see Table 4).  

 

[Table 4. Values of the r parameter used in the NN method] 

 

For each output (i.e. for every values of the r and m parameters) the quantity NRL with 

15,10,7,5,3,2,1'=m  was calculated. The obtained results are presented in Table 8 in the 

appendix. For each m’ the six smallest values of NRL are bolded. 

Additionally, to compare degrees of the outputs’ distortion the relative changes of the 

diameter 
0

0

diam

diamdiam
diam

−
≡∆  are presented in Table 9. 

An analysis of the obtained values of NRL almost univocally (for 1'>m ) indicates six 

outputs. These are, in turn, the outputs corresponding to the following sets of the parameters 

);'( rm : )05.0;15( , )05.0;10( , )05.0;7( , )05.0;5( , )025.0;5( , )025.0;7( . As it is seen from 

Table 9 the outputs from the first four places of this rank are quite heavily distorted, 

meanwhile the two latest ones are moderately distorted. However, to regard representative 
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outputs in respect of the level of the distortion in further research, we decided to reject the 

outputs from the third and fourth positions (i.e. )05.0;7(  and )05.0;5( ) and include one 

additional output with a small degree of the distortion (i.e. 0≈∆diam ) in considerations 

instead.  According to the results from Tables 8 and 9 the output obtained for the parameters 

7'=m , 01.0=r  has been chosen. 

 Finally the outputs summarized in Table 5 have been chosen to further research. 

 

[Table 5. Outputs of the NN method chosen to further research] 

 

 Next, the largest Lyapunov exponent has been calculated to detect chaotic dynamics in 

the considered data.  

 Lyapunov exponents measure an average rate of converging or separating nearby points 

of the system. The presence of at least one positive exponent means a sensitive dependence on 

initial conditions and may be interpreted as a measure of chaos. Positivity of the Lyapunov 

exponent can be used as an operational definition of chaos (see e.g. [14], [20]). 

 In this paper the algorithm of determining the largest Lyapunov exponent introduced 

independently by Rosenstein et al. and Kantz has been applied. It proceeds as follows (see 

[18], [24]): 

1. For each delay vector m

ix̂ = ),...,,( 11 +−− miii xxx , Nmmi ...,,1, +=  a set iO  which consists of 

k nearest neighbours m

i j
x̂  of the vector m

ix̂  is determined. To avoid the situation in which m

ix̂  

and m

i j
x̂  are situated at the same trajectory, the condition *

tii j >−  for fixed *
t  may be 

added
13

. 

2. For each max...,,1, nNmmi −+=  and max,...,1 nn =  one calculates the value: 

                                                
13

 In this paper t*=10, k=1, nmax=5 and the Euclidean distance were arbitrarily set. 
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 ∑
∈

++ −=
i

m

ji

j

Ox

ninin xx
k

id
ˆ

1
)( ,   (7) 

where maxn  is the fixed number of iterations while the divergence of states is analyzed. 

3. The largest Lyapunov exponent is calculated using least-squares fit to the equation: 

 ( ) ( ) nλdd n += 0lnln ,   (8) 

where ∑
=

=
T

i

nn id
T

d
1

)(
1

 denotes an average over the all delay vectors. 

 The algorithm allows to test for the presence of an exponential divergence between 

initially nearby trajectories. Only if for some range of n does the function ( )ndln  exhibit 

linear increase, its slope may be interpreted as an estimate of the largest Lyapunov exponent. 

 The results of the largest Lyapunov exponent estimates for 15,10,7,5,3,2,1=m  are 

summarized in Table 6. 

 

[Table 6. Results of the largest Lyapunov exponent estimates] 

 

 Next the significance of the estimated exponents has been verified. To this end the 

blockwise bootstrap method has been applied (see [3]). In the test the hypotheses are 

formulated as: 

0:.0: 10 >= λλ HvsH ,      (9) 

what means that under the null hypothesis the investigated time series is not generated by 

chaotic system. 

The blockwise bootstrap method consists of the following steps: 
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1. From N-point time series form delay vectors m

ix̂ , Nmmi ...,,1, +=  and estimate the 

largest Lyapunov exponent λ̂ , 

2. Resample with replacement k delay vectors iξ , ki ,...,2,1= , where mNk mod=  and 

concatenate them into sequence ( )kξξ ,...,1 , which constitutes the bootstrap sample, 

3. Estimate the bootstrap value of the largest Lyapunov exponent λ
~

 from the bootstrap 

sample and calculate λλ ˆ~
− , 

4. Repeat steps 2)-3) a large number of times to construct an empirical distribution for 

λλ ˆ~
− , 

5. Construct a one-sided confidence interval, by calculating the critical value as  

)(ˆ αλ q−  (e.g. for %99%,95%,90=α ), where )(αq  is the quantile for the distribution 

in step 4), following from { } ααλλ =≤− )(ˆPr q , 

6. If  0)(ˆ >− αλ q  the null hypothesis is rejected. 

 

As it can be seen the value of λ̂  depends on the m parameter. Thus for each time 

series the maximum value of λ̂  over all 15,10,7,5,3,2,1=m  was considered in the blockwise 

bootstrap method. The obtained results are presented in Table 7. 

 

[Table 7. Results of the blockwise bootstrap method] 

 

  For the time series “WIG” (i.e. for the original time series before noise reduction) the 

null hypothesis was not rejected for any α . This is consistent with the hypothesis that 

investigated series is not chaotic. On the contrary, the positive Lyapunov exponents were 

detected in the all cleaned data. These results mean that the most likely reason, why the 
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positive exponent was not found in “WIG” was the presence of a noise and that the 

investigated time series of daily log returns of the WIG index is generated by noisy chaos. 

However it should be marked that the estimated exponents of cleaned data, although being 

positive, are very small indeed, therefore this identified chaos is quite weak.  

 

 

CONCLUDING REMARKS 

 

 In this paper the new method of determining a level of a noise in chaotic signals was 

proposed. It can be applied to indicate the best output of noise reduction algorithms, without 

using information about the true noise-free signal. The method is easy to apply to and leads to 

univocal results. The application to the chaotic time series with the added noise of a different 

level showed its good power. In most cases the indicated output was the proper one, i.e. its 

distance to the original noise-free data was the lowest.  

 The proposed method was applied to the time series of daily log returns of the Warsaw 

Stock Exchange Index. The Nearest Neighbours algorithm with different values of the 

parameters was used to reduce a noise. According to the proposed quantity NRL five indicated 

outputs were chosen to test for chaos. The largest Lyapunov estimates showed, that there is no 

evidence of chaos in the daily log returns of the Warsaw Stock Exchange Index. However, the 

applied noise reduction procedure led to time series with positive Lyapunov exponents. These 

results mean that investigated time series of daily log returns is a realization of noisy chaos. 

Empirical evidence of chaos in economic data has been reported by some researchers, but in 

many cases this evidence seems weak. The presence of a noise may be responsible for such a 

situation. This inference seems to be confirmed by the results presented in this paper. Thus, 
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besides improving methods of chaotic time series to become more resistant to a noise, 

developing noise reduction techniques seem to be a promising area in chaos theory. 
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APPENDIX: RESULTS OF NRL CALCULATIONS 

 

[Table 8. Values of NRL [%] calculated for the outputs from the NN method applied to the 

daily log returns of the Warsaw Stock Exchange Index] 

 

[Table 9. Values of ∆diam [%] calculated for the outputs from the NN method to the daily log 

returns of the Warsaw Stock Exchange Index] 
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FIGURES 

 

Fig. 1. Noise-free Henon attractor 
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Fig. 2a. Henon attractor with noise 

(SNR=50) 
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Fig. 2b. Henon attractor after noise reduction 

(r=0.1) 
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Fig. 3a. Henon attractor with noise 

(SNR=25) 
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Fig. 3b. Henon attractor after noise reduction 

(r=0.1) 
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Fig. 4a. Henon attractor with noise 

(SNR=10) 
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Fig. 4b. Henon attractor after noise reduction 

(r=0.1) 
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Fig. 5a. Henon attractor with noise  

(SNR=1) 
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Fig. 5b. Henon attractor after noise reduction 

(r=1) 
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TABLES 

 

Table 1. Quantities NRL(m’) [ %] and e for the Henon map 

 

Radius r e NRL(1) NRL(2) NRL(3) NRL(5) NRL(7) NRL(10) NRL(15) 

SNR=50 

0.001 0.01468 -0.0007 

(5.9E-06) 

-4.7E-05 

(1.8E-05) 

-7.5E-06 

(1.3E-05) 

1.5E-05 

(5.2E-06) 

2.7E-05 

(6.0E-06) 

1.2E-05 

(3.1E-06) 

6.9E-06 

(5.7E-06) 

0.01 0.01467 -1.2183 

(5.9E-06) 

-0.7571 

(0.0279) 

-0.7515 

(1.3E-05) 

-0.3991 

(5.2E-06) 

-0.1506 

(6.0E-06) 

-0.0654 

(0.0019) 

-0.0026 

(0.0089) 

0.1 0.01029 -0.4840 

(1.8407) 

-44.3977 

(1.1578) 

-52.4965 

(1.2760) 

-51.4974 

(1.5243) 

-43.6779 

(0.9922) 

-23.8308 

(1.1207) 

-5.5998 

(0.3580) 

1 0.14354 -3.3979 

(12.0588) 

-31.7682 

(10.9801) 

-36.3733 

(10.2278) 

-28.9374 

(15.3200) 

-21.4811 

(14.9719) 

-13.4605 

(16.7386) 

-17.6959 

(17.5354) 

before 

reduction 

0.01468 0 0 0 0 0 0 0 

SNR=25 

0.001 0.02937 -0.0006 

(1.9E-05) 

2.2E-05 

(1.8E-05) 

3E-05 

(5.9E-06) 

2.5E-05 

(1.0E-05) 

7.9E-06 

(3.7E-06) 

1.2E-05 

(2.0E-06) 

5.2E-06 

(7.7E-07) 

0.01 0.02937 -0.0006 

(1.9E-05) 

2.2E-05 

(1.8E-05) 

3E-05 

(5.9E-06) 

2.5E-05 

(1.0E-05) 

7.9E-06 

(3.7E-06) 

1.2E-05 

(2.0E-06) 

5.2E-06 

(7.7E-07) 

0.1 0.01479 -3.3090 

(3.2037) 

-42.9889 

(2.6869) 

-54.1038 

(2.5693) 

-56.8414 

(2.4585) 

-53.0518 

(2.0608) 

-37.4352 

(1.6085) 

-12.4759 

(0.4583) 

1 0.14418 -4.3662 

(13.2392) 

-33.5175 

(12.3726) 

-42.0554 

(11.4756) 

-38.5766 

(13.6458) 

-33.9058 

(15.8930) 

-24.8093 

(15.9481) 

-21.9537 

(17.6750) 

before 

reduction 

0.02937 0 0 0 0 0 0 0 

SNR=10 

0.001 0.07341 0.0005 

(4.7E-06) 

-8.2E-06 

(8.4E-07) 

1.8E-05 

(9.5E-06) 

6.0E-06 

(6.4E-06) 

-2.5E-06 

(5.3E-07) 

2.7E-06 

(1.7E-06) 

2.0E-06 

(2.5E-06) 

0.01 0.07341 0.0005 

(4.7E-06) 

-8.2E-06 

(8.4E-07) 

1.8E-05 

(9.5E-06) 

6.0E-06 

(6.4E-06) 

-2.5E-06 

(5.3E-07) 

2.7E-06 

(1.7E-06) 

2.0E-06 

(2.5E-06) 

0.1 0.06520 0.3903 

(1.8416) 

-7.0338 

(2.1068) 

-15.0061 

(1.5912) 

-21.1362 

(1.4716) 

-16.0755 

(1.4489) 

-11.2505 

(0.9368) 

-6.4818 

(0.7386) 

1 0.14706 -1.7854 

(16.8279) 

-34.6290 

(16.7948) 

-45.5679 

(15.3430) 

-46.1866 

(18.3951) 

-42.7728 

(19.9092) 

-37.3932 

(20.1559) 

-32.0302 

(18.4711) 

before 

reduction 

0.07341 0 0 0 0 0 0 0 
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SNR=1 

0.001 0.73413 -1.1E-05 

(4.8E-06) 

1.3E-05 

(3.4E-06) 

-1.2E-06 

(2.3E-06) 

2.4E-07 

(4.1E-06) 

1.8E-06 

(4.0E-06) 

2.3E-06 

(3.2E-06) 

1.6E-06 

(1.9E-06) 

0.01 0.73413 -1.1E-05 

(4.8E-06) 

1.3E-05 

(3.4E-06) 

-1.2E-06 

(2.3E-06) 

2.4E-07 

(4.1E-06) 

1.8E-06 

(4.0E-06) 

2.3E-06 

(3.2E-06) 

1.6E-06 

(1.9E-06) 

0.1 0.73413 0.3691 

(4.8E-06) 

-0.0504 

(3.4E-06) 

-0.0141 

(2.3E-06) 

-0.0065 

(4.1E-06) 

-0.0037 

(4.0E-06) 

-0.0008 

(3.2E-06) 

-0.0015 

(1.9E-06) 

1 0.57762 0.2583 

(21.6299) 

-4.4669 

(20.4535) 

-3.5693 

(22.3104) 

-7.2804 

(19.4009) 

-6.6697 

(19.9088) 

-5.4544 

(19.8175) 

-5.2039 

(19.1304) 

before 

reduction 

0.73413 0 0 0 0 0 0 0 
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Table 2. Quantities NRL(m’) [ %] and e for the logistic map 

 

Radius r e NRL(1) NRL(2) NRL(3) NRL(5) NRL(7) NRL(10) NRL(15) 

SNR=50 

0.001 0.00703 0.0016 

(3.0E-05) 

0.0001 

(1.3E-05) 

7.4E-05 

(1.2E-05) 

2.7E-05  

(4.6E-06) 

1.5E-05  

(3.3E-07) 

5.7E-06  

(2.5E-06) 

3.0E-06  

(2.4E-06) 

0.01 0.00672 2.0744 

(0.1633) 

-4.0256 

(0.2803) 

-10.3170 

(0.2300) 

-9.7381 

(0.0972) 

-4.0643 

(0.0342) 

-0.5611 

(0.0370) 

-0.0005 

(0.0374) 

0.1 0.00592 2.0064 

(3.0840) 

-44.7431 

(2.9513) 

-52.8140 

(2.4919) 

-50.0907 

(2.1513) 

-33.8730 

(1.6497) 

-8.8553 

(1.0258) 

-0.4265 

(0.7200) 

1 0.35224 0.3891 

(94.5038) 

2.6862 

(94.6522) 

2.6313 

(94.9453) 

2.2099 

(95.5106) 

1.6892 

(96.0580) 

-0.9103 

(96.4631) 

-2.3007 

(96.6425) 

before 

reduction 

0.00703 0 0 0 0 0 0 0 

SNR=25 

0.001 0.01405 0.0011 

(4.4E-05) 

-2.7E-06 

(1.5E-05) 

-2E-05 

(5.1E-06) 

-8.8E-06 

(5.7E-06) 

-1.1E-05 

(7.9E-07) 

-5.6E-06 

(1.0E-06) 

-8.2E-08 

(9.7E-07) 

0.01 0.01403 -0.1498 

(0.0556) 

-0.9017 

(1.5E-05) 

-1.7604 

(5.1E-06) 

-0.6588 

(5.7E-06) 

-0.2160 

(0.0117) 

-0.0507 

(0.0016) 

0.0213 

(0.0273) 

0.1 0.00710 1.9456 

(4.7304) 

-48.8873 

(4.8348) 

-58.7867 

(3.9522) 

-60.3410 

(3.7847) 

-49.9355 

(2.4174) 

-17.1284 

(1.6307) 

-1.1552 

(0.8177) 

1 0.35235 0.2343 

(92.2182) 

1.5085 

(92.4053) 

0.9652 

(92.8347) 

0.7166 

(93.7220) 

1.0035 

(94.2610) 

-0.9388 

(94.6404) 

-2.9226 

(95.0957) 

before 

reduction 

0.01405 0 0 0 0 0 0 0 

SNR=10 

0.001 0.03513 -0.0011 

(2.0E-05) 

-6.6E-06 

(5.0E-06) 

2.7E-06 

(5.3E-06) 

6.9E-06 

(6.7E-06) 

8.2E-06 

(6.3E-06) 

7.4E-06 

(6.5E-06) 

5.7E-06 

(6.2E-06) 

0.01 0.03513 -0.0315 

(2.0E-05) 

-0.0148 

(5.0E-06) 

-0.0193 

(5.3E-06) 

-0.0031 

(6.7E-06) 

0.0012 

(6.3E-06) 

-0.0011 

(6.5E-06) 

-0.0006 

(6.2E-06) 

0.1 0.01514 -6.4746 

(7.8158) 

-38.0378 

(8.6298) 

-47.7701 

(7.3435) 

-53.8826 

(7.1690) 

-53.7599 

(4.3353) 

-32.8362 

(3.1025) 

-4.7891 

(1.2972) 

1 0.35025 1.2471 

(84.2245) 

-2.4985 

(84.8853) 

-2.7062 

(86.2465) 

-2.6009 

(87.8562) 

-1.7341 

(88.9405) 

-1.7650 

(89.6840) 

-4.5276 

(90.3072) 

before 

reduction 

0.03513 0 0 0 0 0 0 0 

SNR=1 

0.001 0.35130 0.0005 

(1.9E-05) 

-1.2E-05 

(9.0E-06) 

1.4E-05 

(1.2E-05) 

1.1E-05 

(1.2E-05) 

1.5E-05 

(1.4E-05) 

5.4E-06 

(3.5E-06) 

1.2E-05 

(1.2E-05) 
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0.01 0.35130 0.0005 

(1.9E-05) 

-1.2E-05 

(9.0E-06) 

1.4E-05 

(1.2E-05) 

1.1E-05 

(1.2E-05) 

1.5E-05 

(1.4E-05) 

5.4E-06 

(3.5E-06) 

1.2E-05 

(1.2E-05) 

0.1 0.35129 2.4990 

(1.9E-05) 

-0.1141 

(9.0E-06) 

-0.6419 

(1.2E-05) 

-0.3871 

(1.2E-05) 

-0.0532 

(1.4E-05) 

-0.0001 

(3.5E-06) 

-0.0067 

(1.2E-05) 

1 0.25267 0.6972 

(53.5282) 

-3.3927 

(56.9274) 

-3.9366 

(57.8384) 

-3.7838 

(58.9435) 

-4.0285 

(59.5164) 

-3.8178 

(60.1248) 

-3.6061 

(60.4158) 

before 

reduction 

0.35130 0 0 0 0 0 0 0 
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Table 3. Quantities NRL(m’) [ %] and e for the Lorenz system 

 

Radius r e NRL(1) NRL(2) NRL(3) NRL(5) NRL(7) NRL(10) NRL(15) 

SNR=50 

0.02 0.25706 0.0002 

(8.6E-06) 

-3.6E-05 

(6.5E-06) 

-2.3E-06 

(4.8E-06) 

7.2E-06 

(4.2E-06) 

-3.9E-06 

(1.6E-06) 

-1.7E-05 

(1.0E-06) 

-1.1E-05 

(1.3E-06) 

0.2 0.25681 -1.2059 

(8.6E-06) 

-0.1491 

(6.5E-06) 

-0.5439 

(4.8E-06) 

-0.3071 

(4.2E-06) 

-0.1304 

(1.6E-06) 

-0.0941 

(1.0E-06) 

-0.0861 

(1.3E-06) 

2 0.22635 2.5773 

(1.0671) 

-8.4983 

(1.1788) 

-30.3092 

(1.1135) 

-37.8543 

(0.8351) 

-37.3158 

(0.7591) 

-35.2303 

(0.7671) 

-31.7086 

(0.6755) 

20 4.66168 -1.8027 

(46.6171) 

-0.9174 

(46.3099) 

-13.9762 

(46.0364) 

-18.9447 

(45.2045) 

-19.5569 

(44.0110) 

-19.7320 

(42.0856) 

-20.0896 

(39.2118) 

before 

reduction 

0.25706 

 

0 0 0 0 0 0 0 

SNR=25 

0.02 0.51413 -0.0008 

(3.3E-06) 

-7.8E-05 

(8.3E-08) 

-1.8E-06 

(1.1E-06) 

7.6E-07 

(1.6E-06) 

-5.1E-06 

(4.1E-07) 

6.2E-06 

(5.5E-08) 

2.7E-06 

(1.4E-07) 

0.2 0.51406 0.1405 

(3.3E-06) 

-0.1154 

(8.3E-08) 

-0.1382 

(1.1E-06) 

-0.0677 

(1.6E-06) 

-0.0233 

(4.1E-07) 

-0.0102 

(5.5E-08) 

-0.0143 

(1.4E-07) 

2 0.29672 0.3916 

(0.6252) 

-15.2572 

(0.8171) 

-37.3999 

(0.9941) 

-46.5354 

(0.6066) 

-47.7607 

(0.5440) 

-47.0001 

(0.6787) 

-45.5992 

(0.5101) 

20 4.59838 -1.7748 

(46.5307) 

-5.6262 

(46.0921) 

-22.4071 

(45.8256) 

-28.6054 

(45.0101) 

-30.4874 

(43.7353) 

-31.4565 

(41.9276) 

-32.3224 

(39.0802) 

before 

reduction 

0.51413 

 

0 0 0 0 0 0 0 

SNR=10 

0.02 1.28531 0.0003 

(8.3E-06) 

7.4E-06 

(2.1E-06) 

7.9E-07 

(5.2E-06) 

1.1E-06 

(1.1E-06) 

-2.5E-06 

(1.4E-06) 

2.1E-06 

(1.3E-06) 

5.8E-06 

(1.3E-06) 

0.2 1.28531 0.0003 

(8.3E-06) 

7.4E-06 

(2.1E-06) 

7.9E-07 

(5.2E-06) 

1.1E-06 

(1.1E-06) 

-2.5E-06 

(1.4E-06) 

2.1E-06 

(1.3E-06) 

5.8E-06 

(1.3E-06) 

2 1.02212 -0.6801 

(0.6565) 

-12.4599 

(0.5894) 

-19.5989 

(0.1762) 

-25.0840 

(0.1719) 

-25.2618 

(0.1092) 

-23.5408 

(0.1010) 

-21.8643 

(0.1960) 

20 4.32607 -0.7606 

(46.2775) 

-16.8876 

(45.3678) 

-31.2357 

(44.6167) 

-37.6060 

(44.1126) 

-40.3037 

(42.4684) 

-41.9160 

(40.8214) 

-43.7330 

(38.0821) 

before 

reduction 

1.28531 0 0 0 0 0 0 0 

SNR=1 

0.02 12.8531 -0.0003 

(8.2E-06) 

-1.5E-05 

(5.1E-06) 

9.2E-06 

(3.0E-06) 

2.6E-06 

(2.0E-06) 

3.8E-06 

(2.3E-06) 

1.2E-06 

(2.2E-07) 

4.9E-06 

(4.2E-06) 
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0.2 12.8531 -0.0003 

(8.2E-06) 

-1.5E-05 

(5.1E-06) 

9.2E-06 

(3.0E-06) 

2.6E-06 

(2.0E-06) 

3.8E-06 

(2.3E-06) 

1.2E-06 

(2.2E-07) 

4.9E-06 

(4.2E-06) 

2 12.8532 -0.4620 

(8.2E-06) 

0.0171 

(5.1E-06) 

-0.0627 

(3.0E-06) 

-0.0322 

(2.0E-06) 

-0.0044 

(2.3E-06) 

-0.0025 

(2.2E-07) 

-0.0008 

(4.2E-06) 

20 8.34946 -6.5525 

(25.6417) 

-5.2089 

(25.2863) 

-9.8332 

(23.2964) 

-14.2985 

(22.3302) 

-17.0138 

(19.9970) 

-17.2966 

(19.5290) 

-17.6282 

(18.8746) 

before 

reduction 

12.8531 

 

0 0 0 0 0 0 0 
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Table 4. Values of the r parameter used in the NN method 

 

m=1 m=2 m=3 m=5 m=7 m=10 m=15 

0.0005 0.00075 0.001 0.0025 0.005 0.005 0.005 

0.00075 0.001 0.0025 0.005 0.0075 0.0075 0.0075 

0.001 0.0025 0.005 0.0075 0.01 0.01 0.01 

0.0025 0.005 0.0075 0.01 0.025 0.025 0.025 

0.005 0.0075 0.01 0.025 0.05 0.05 0.05 

0.0075 0.01 0.025 0.05 0.075 0.075 0.075 

0.01 0.025 0.05 0.075 0.1 0.1 0.1 

0.025 0.05 0.075 0.1 0.25 0.25 0.25 
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Table 5. Outputs of the NN method chosen to further research 

 

Name of series 

(parameters) 

NRL(1) 

(∆diam) 

NRL(2) 

(∆diam) 

NRL(3) 

(∆diam) 

NRL(5) 

(∆diam) 

NRL(7) 

(∆diam) 

NRL(10) 

(∆diam) 

NRL(15) 

(∆diam) 

WIG1 

(15; 0.05)  

3.729 

(7.033) 

-54.501 

(9.976) 

-61.233 

(15.075) 

-72.02 

(11.244) 

-73.208 

(11.947) 

-73.560 

(12.696) 

-69.557 

(17.024) 

WIG2 

(10; 0.05)  

15.018 

(10.091) 

-53.511 

(14.140) 

-59.616 

(19.630) 

-67.639 

(18.030) 

-67.947 

(19.342) 

-67.800 

(20.250) 

-62.475 

(25.574) 

WIG3 

(5; 0.025)  

-3.195 

(1.336) 

-33.452 

(1.042) 

-42.351 

(0.431) 

-49.399 

(1.569) 

-51.625 

(1.998) 

-51.91 

(2.717) 

-47.184 

(7.354) 

WIG4 

(7; 0.025)  

-1.870 

(0.000) 

-30.778 

(0.412) 

-39.520 

(0.303) 

-47.983 

(0.538) 

-51.141 

(0.795) 

-52.288 

(0.990) 

-48.440 

(5.108) 

WIG5 

(7; 0.01)  

-1.011 

(0.000) 

-1.700 

(0.000) 

-4.880 

(0.054) 

-7.754 

(0.000) 

-9.576 

(0.000) 

-8.972 

(0.000) 

-8.483 

(0.000) 
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Table 6. Results of the largest Lyapunov exponent estimates 

 

           m 

series        
m=1 m=2 m=3 m=5 m=7 m=10 m=15 

WIG -0.0117          -0.0053 -0.0005 0.0039 0.0053 0.0036 0.0022 

WIG1 0.0332 0.0418 0.0472 0.0540 0.0213 0.0372 0.0384 

WIG2 0.0261 0.0352 0.0386 0.0331 0.0186 0.0320 0.0332 

WIG3 -0.0011 0.0154 0.0209 0.0249 0.0182 0.0166 0.0257 

WIG4 0.0107 0.0184 0.0200 0.0331 0.0255 0.0140 0.0217 

WIG5 0.0097 0.0050 0.0128 0.0216 0.0368 0.0124 0.0171 
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Table 7. Results of the blockwise bootstrap method 

 

 WIG WIG1 WIG2 WIG3 WIG4 WIG5 

λ̂  0.0053 0.0540 0.0386 0.0257 0.0331 0.0368 

%)90(ˆ q−λ  -0.010 0.044 0.040 0.012 0.026 0.065 

%)95(ˆ q−λ  -0.012 0.041 0.037 0.009 0.022 0.057 

%)99(ˆ q−λ  -0.019 0.033 0.030 0.003 0.017 0.050 
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Table 8. Values of NRL [%] calculated for the outputs from the NN method applied to the 

daily log returns of the Warsaw Stock Exchange Index 

 

Series 

(parameters m/r) 

NRL(1) 

 

NRL(2) 

 

NRL(3) 

 

NRL(5) 

 

NRL(7) 

 

NRL(10) 

 

NRL(15) 

 

m’=1 r=0.0005 -13.541 -0.903 -0.063 0.003 -0.005 -0.004 0.009 

 r=0.00075 -17.060 -1.408 -0.195 -0.008 -0.035 -0.034 -0.042 

 r=0.001 -19.092 -1.748 -0.355 -0.099 -0.131 -0.130 -0.124 

 r=0.0025 -21.234 -0.643 -1.172 -0.383 -0.407 -0.500 -0.430 

 r=0.005 -19.969 -3.423 -2.019 -2.668 -2.999 -3.070 -2.807 

 r=0.0075 -18.632 -6.313 -4.893 -5.954 -6.258 -6.417 -6.078 

 r=0.01 -19.153 -8.128 -8.584 -10.469 -11.015 -11.126 -10.348 

 r=0.025 -13.011 -25.458 -29.163 -33.764 -35.056 -34.945 -31.719 

m’=2 r=0.00075 0.155 -7.518 -0.912 -0.101 -0.046 -0.023 -0.029 

 r=0.001 -1.125 -7.998 -1.362 -0.168 -0.128 -0.059 -0.080 

 r=0.0025 -0.034 -7.071 -3.181 -0.949 -0.628 -0.562 -0.590 

 r=0.005 2.501 -5.943 -4.273 -3.625 -3.723 -3.739 -3.248 

 r=0.0075 7.343 -8.157 -8.107 -7.596 -7.910 -7.961 -7.470 

 r=0.01 -1.115 -11.919 -11.859 -12.729 -13.528 -13.541 -12.655 

 r=0.025 -20.984 -31.553 -37.837 -40.482 -42.013 -41.846 -38.180 

 r=0.05 13.249 -35.367 -41.751 -36.593 -37.187 -36.716 -33.267 

m’=3 r=0.001 -0.560 -1.362 -1.683 -0.060 -0.020 -0.003 -0.012 

 r=0.0025 -1.186 -1.733 -6.635 -1.229 -0.492 -0.432 -0.471 

 r=0.005 -1.261 -3.043 -6.555 -4.132 -3.311 -3.327 -2.944 

 r=0.0075 2.991 -5.566 -9.639 -8.070 -7.559 -7.724 -7.708 

 r=0.01 1.716 -8.286 -12.257 -12.853 -13.402 -13.561 -12.732 

 r=0.025 -12.592 -32.745 -41.998 -45.989 -47.844 -47.664 -43.316 

 r=0.05 -7.700 -38.803 -45.976 -39.464 -40.126 -39.675 -35.929 

 r=0.075 3.843 -22.243 -23.299 -20.609 -20.377 -20.051 -18.382 

m’=5 r=0.0025 -0.446 -0.239 -0.360 -0.455 -0.042 0.010 -0.009 

 r=0.005 -1.271 0.058 -1.480 -4.506 -2.329 -1.472 -1.298 

 r=0.0075 0.695 -2.622 -4.196 -8.417 -6.654 -5.875 -5.513 

 r=0.01 0.203 -3.669 -7.988 -12.311 -12.147 -11.977 -11.728 

 r=0.025 -3.195 -33.452 -42.351 -49.399 -51.625 -51.91 -47.184 

 r=0.05 10.920 -43.497 -50.740 -52.826 -52.739 -53.865 -49.334 

 r=0.075 6.964 -21.389 -22.851 -21.992 -21.793 -21.458 -19.685 

 r=0.1 1.643 -7.602 -8.042 -6.774 -6.600 -6.473 -5.956 

m’=7 r=0.005 0.037 0.003 0.047 -1.119 -1.156 -0.401 -0.245 

 r=0.0075 -1.009 -0.043 -1.473 -3.694 -4.691 -3.437 -2.913 

 r=0.01 -1.011 -1.700 -4.880 -7.754 -9.576 -8.972 -8.483 

 r=0.025 -1.870 -30.778 -39.520 -47.983 -51.141 -52.288 -48.440 

 r=0.05 11.554 -49.500 -54.787 -60.398 -60.261 -59.731 -54.595 
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 r=0.075 5.864 -21.815 -23.228 -22.744 -22.625 -22.297 -20.469 

 r=0.1 1.551 -7.468 -7.995 -6.741 -6.578 -6.455 -5.937 

 r=0.25 0.003 -0.011 -0.013 -0.011 -0.010 -0.008 -0.007 

m’=10 r=0.005 0.023 -0.022 -0.025 -0.034 -0.057 -0.039 -0.011 

 r=0.0075 -0.259 -0.251 -0.068 -0.475 -1.107 -1.343 -0.777 

 r=0.01 -1.244 -1.512 -1.829 -2.976 -4.033 -4.837 -4.335 

 r=0.025 2.972 -27.037 -36.079 -44.474 -48.114 -49.852 -48.923 

 r=0.05 15.018 -53.511 -59.616 -67.639 -67.947 -67.800 -62.475 

 r=0.075 8.161 -22.607 -24.183 -23.369 -23.318 -23.051 -21.227 

 r=0.1 1.71 -7.383 -7.964 -6.699 -6.544 -6.433 -5.918 

 r=0.25 -0.002 -0.005 -0.005 -0.004 -0.005 -0.004 -0.004 

m’=15 r=0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 r=0.0075 -0.134 0.117 0.003 -0.003 -0.013 -0.050 -0.032 

 r=0.01 -0.198 -0.357 -0.078 -0.293 -0.615 -0.947 -1.097 

 r=0.025 -4.329 -21.641 -30.714 -39.53 -43.205 -45.551 -46.785 

 r=0.05 3.729 -54.501 -61.233 -72.02 -73.208 -73.560 -69.557 

 r=0.075 9.504 -23.277 -24.795 -23.67 -23.709 -23.447 -21.625 

 r=0.1 1.554 -7.291 -7.903 -6.622 -6.471 -6.395 -5.889 

 r=0.25 0.001 -0.012 -0.014 -0.014 -0.015 -0.015 -0.013 

 



 34

Table 9. Values of ∆diam [%] calculated for the outputs from the NN method to the daily log 

returns of the Warsaw Stock Exchange Index 

 

Series 

(parameters m/r) 

∆diam 

m=1 

∆diam 

m=2 

∆diam 

m=3 

∆diam 

m=5 

∆diam 

m=7 

∆diam 

m=10 

∆diam 

m=15 

m’=1 r=0.0005 0.000 0.015 0.015 0.026 0.025 0.026 0.035 

 r=0.00075 0.000 0.085 0.010 0.054 0.04 0.038 0.031 

 r=0.001 0.000 0.085 0.003 0.051 0.003 0.003 0.011 

 r=0.0025 0.000 0.702 0.141 0.464 0.444 0.423 0.498 

 r=0.005 2.048 0.097 1.18 0.808 0.681 0.697 0.94 

 r=0.0075 2.808 0.339 2.012 1.546 1.596 1.713 2.065 

 r=0.01 3.479 1.404 2.812 2.332 2.439 2.604 3.415 

 r=0.025 11.935 12.869 17.150 17.222 17.523 18.085 21.271 

m’=2 r=0.00075 0.000 0.000 0.000 0.000 0.002 0.002 -0.029 

 r=0.001 0.000 0.000 0.046 0.000 0.008 0.007 -0.080 

 r=0.0025 0.000 0.000 0.055 0.107 0.151 0.204 -0.590 

 r=0.005 0.000 0.21 0.11 0.107 0.012 0.079 -3.248 

 r=0.0075 0.000 0.73 0.071 0.06 0.063 0.253 -7.470 

 r=0.01 0.000 0.277 0.215 0.128 0.104 0.424 -12.655 

 r=0.025 5.189 7.306 7.781 10.95 11.461 12.257 -38.180 

 r=0.05 35.982 40.727 41.886 50.560 50.878 51.667 -33.267 

m’=3 r=0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.005 

 r=0.0025 0.000 0.000 0.070 0.000 0.000 0.000 0.005 

 r=0.005 0.000 0.000 0.005 0.000 0.079 0.038 0.226 

 r=0.0075 0.000 0.000 0.167 0.000 0.050 0.07 0.093 

 r=0.01 0.000 0.059 0.176 0.038 0.028 0.245 1.017 

 r=0.025 2.653 3.407 3.038 5.410 6.019 6.916 11.042 

 r=0.05 34.268 37.334 37.68 47.892 48.181 48.973 52.589 

 r=0.075 70.023 70.922 72.615 76.342 76.819 77.239 78.894 

m’=5 r=0.0025 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 r=0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 r=0.0075 0.000 0.000 0.000 0.000 0.000 0.013 0.104 

 r=0.01 0.000 0.000 0.023 0.000 0.027 0.008 0.006 

 r=0.025 1.336 1.042 0.431 1.569 1.998 2.717 7.354 

 r=0.05 20.438 29.459 32.048 34.338 35.569 34.863 39.266 

 r=0.075 67.415 71.157 72.811 74.915 75.398 75.842 77.602 

 r=0.1 90.674 90.980 91.116 92.598 92.806 92.937 93.439 

m’=7 r=0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 r=0.0075 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 r=0.01 0.000 0.000 0.054 0.000 0.000 0.000 0.000 

 r=0.025 0.000 0.412 0.303 0.538 0.795 0.990 5.108 

 r=0.05 14.113 21.282 26.737 26.344 27.826 28.899 33.937 
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 r=0.075 66.023 70.43 72.333 74.136 74.573 75.019 76.836 

 r=0.1 90.709 91.074 91.138 92.612 92.818 92.948 93.455 

 r=0.25 99.989 99.987 99.987 99.989 99.990 99.992 99.993 

m’=10 r=0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 r=0.0075 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 r=0.01 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 r=0.025 0.000 0.000 0.264 0.193 0.182 0.359 1.973 

 r=0.05 10.091 14.140 19.630 18.030 19.342 20.250 25.574 

 r=0.075 64.824 69.324 71.247 73.474 73.872 74.274 76.096 

 r=0.1 90.746 91.153 91.161 92.631 92.834 92.960 93.468 

 r=0.25 99.995 99.994 99.994 99.995 99.995 99.996 99.996 

m’=15 r=0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 r=0.0075 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 r=0.01 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 r=0.025 0.000 0.000 0.182 0.000 0.000 0.011 0.202 

 r=0.05 7.033 9.976 15.075 11.244 11.947 12.696 17.024 

 r=0.075 64.051 68.563 70.512 73.103 73.442 73.855 75.701 

 r=0.1 90.809 91.229 91.199 92.676 92.877 92.976 93.482 

 r=0.25 99.988 99.986 99.985 99.985 99.985 99.985 99.987 

 


